6.5A – Average versus Instantaneous Rate of Change

Secant is a line that joins two points on a curve. As such, it determines the average slope between these two points of the curve.

Tangent is a line that touches a curve at only one point. As such, it gives the instant slope of the curve at this one point. One can approximate the slope of the tangent by using a secant that has two points very close together on either side of the tangent point that they are interested in.

Consider the function: $f(x) = -(x - 2)^2 + 4$ Ex.

The *rate of change* compares how one variable changes with respect to another. As the variables have different units we call this comparison a rate rather then a ratio. Graphically this rate can be defined as slope. Below are some common examples of how the rate of change can vary over the domain of a function.

Hours worked

b) increasing rate of change (exponential, rational, ?)

Example 1: Match the graph with the corresponding description and indicate (by circling your response) if the rate of change is zero, constant or changing.

	Graphs		Description	Graph Match
A	t	1.	A grade 12 student's height over the next 12 months.	zero constant changing
В	1	2.	Money deposited on your 12th birthday grew slowly at first, then more quickly.	zero constant changing
С	t	3.	Andrea walks quickly, slows to a stop, and then speeds up until she is travelling at the same speed as when she started.	Zero Constant changing
D		4.	Over a one-month period the rate of growth for a sunflower is constant.	Zero Constant changing
E	t	5.	Clara walks quickly and then slows to a stop. She then walks quickly and slows to a second stop. Clara then walks at a pace that is a little slower than when she started.	Zero Constant changing

Example 2: A height of a shot put can be modelled by the function $H(t) = -4.9t^2 + 8t + 1.5$, where h is the height in metres and t is the time in seconds. Graph shown below.

a) At what point do you think the shot put was travelling

Example 3: The thickness of the ice on a lake for one week is modelled by the function: $T(d) = -0.1d^3 + 1.2d^2 - 4.4d + 14.8$, where T is the thickness in cm and d is the number of days after December 31st. The graph of the function is shown.

a) When do you think the warmest day occurred during the week? Justify your answer.

- b) Determine the average rate of change on a short interval near the point you chose in a).
- c) Determine the instantaneous rate of change at the point you chose in a).
- d) Were your answers to the average rate of change the same as the instantaneous rate of change, if not why not?

Thickness vs Time

6.5A - average versus instantaneous rate of change

6.5A – Average versus Instantaneous Rate of Change Practice Questions

- 1. Determine if the below statement represent; average, close to instant or instant rates.
 - a) Some road tolls in the U.S. give speeding tickets based on the time it takes you to travel between exits.
 - b) A police officer pulls you over for speeding since her radar gun displays 130 km/hr.
 - c) Canada's population grew at a rate of 0.869% from 2006 to 2007.
 - d) Roy Halliday's fast ball was measured to have a velocity of 152 km/h.
 - e) Your parents kept a growth chart from the time you were 1 until you were 5 years old. They have calculated that your growth rate in that period was 9 cm/year.
 - f) In 1996, Hurricane Bertha had wind gusts up to185 km/h. At some times during Hurricane Bertha the wind was gusting at 100 km/h.
 - g) Water is being poured into a container. The rate in which the water level increases between 0 and 5 seconds of the pour is 7 mm/sec.
 - h) A CO₂ probe measures the rate of increase of atmospheric CO₂. The probe reads an increase of 1.7×10^{-8} ppm/sec.
- 2. In general does the speedometer of a car measure average or instant rate of change. Describe a scenario in which the average speed and instant speed would be the same.
- 3. Sketch the curve $y = (\frac{1}{2}(x-3))^2 + 4$
 - a) Calculate the average slope (secant) from 0 to 3 seconds
 - b) Draw a tangent at x = 7. Calculate the slope at this point
 - c) Describe what happens to the rate of change from 0 to 3 seconds
 - d) Describe what happens to the rate of change from 0 to 6 seconds
 - e) Describe when rate of change is zero
- 4. The diagram below describes the height of a ball thrown into the air according to the formula $h(t) = -3(t-2.5)^2 + 25$. Determine;
 - Figure 1: Height vs. Time (2.5, 25)30 25 20 Height (m) 15 10 5 0 2 3 5 7 0 1 4 6 8 Time (s)
 - b) the initial height from which ball was thrownc) describe interval when ball's height decreases

a) the maximum height ball reaches

- d) the *average rate* at which the ball's height changes from; i) 0 to 1s
 - ii) 0 to 4s
- e) the *instantaneous rate* at which the ball's height changes at;
 i) 4s
 ii) 2.5s

- a) Is the function increasing or decreasing on the interval $\pi/3$ to $2\pi/3$
- b) Draw the line through the points $f(\pi/3)$ and $f(2\pi/3)$ and then find average slope.
- c) Describe how to find the instantaneous rate of change at $\pi/3$ What does this mean?
- Answers 1.a) A b) I c) A d) C e) A f) I g) A h) I 2. If drive at a constant speed 3.a) 1.5 b) 4 c) decreases d) decrease till x-3 then increases when x>3 e) x=3 4.a) 25m b) 6m c) 2.5 < t < 5.4 d) i) 12m/s ii) 3m/s e) i) -7m/s ii) 0m/s 5.a) increasing b) $4.5/\pi$ rad/ θ c) about 2.56 rad/ θ