MHF 4U Unit 1 -Polynomial Functions- Outline

Day	Lesson Title	Specific Expectations
1	Average Rate of Change and Secants	D1.2, 1.6, both D1.1A’s
2-3	Instantaneous Rate of Change and Tangents	$\begin{aligned} & \text { D1.6, 1.4, 1.7, 1.5, } \\ & \text { both D1.1A's } \end{aligned}$
4	Solving Problems Involving Average and Instantaneous Rate of Change Numerically and Graphically	D1.8, 1.1
5-6	Characteristics of Polynomial Functions Through Numeric, Graphical, and Algebraic Representations	A1.1, 1.2, 1.3, 1.4
$\begin{gathered} 7 \\ \text { (Lesson } \\ \text { included) } \end{gathered}$	Using the Factored Form of a Polynomial Function to Sketch a Graph and Write Equations	A1.6, 1.8
8	Transformations of $f(x)=x^{3}$ and $f(x)=x^{4}$ and Even and Odd Functions	A1.7, 1.9
$9-10$ (Lessons included)	Dividing Polynomials, The Remainder Theorem and The Factor Theorem	A2.1, A2.1A
11-12	The Zeros of a Polynomial Function Graphically and Algebraically with Applications to Curve Fitting	A2.2, 2.3 , 2 4, 2.6
13-14	Solving Polynomials Inequalities Graphically, Numerically, and Algebraically	A3.1, 3.23 .3
15-16	JAZZ DAY	
17	SUMMATIVE ASSESSMENT	
TOTAL DAYS:		17

Concept Practice	Home Activity or Further Classroom Consolidation Assign questions similar to BLM 1.7.1 Ask the question: What information is needed to determine an exact equation for a graph if x intercepts are given? Possible answer to be taken up the next day and followed through in lesson : Another point on the function.	

A-W 11	McG-HR 11	H11	A-W12 (MCT)	H12	McG-HR 12
				1.1	2.1

1.7.1 What Role Do Factors Play?

1. Use technology (graphing calculator, software, GSP_Gr12_U1D7) to determine the graph of each polynomial function. Sketch the graph, clearly identifying the x-intercepts.

2. Compare your graphs with the graphs generated on the previous day and make a conclusion about the degree of a polynomial when it is given in factored form.
3. Explain how to determine the degree of a polynomial algebraically if given in factored form.
4. What connection do you observe between the factors of the polynomial function and the x-intercepts? Why does this make sense? (hint: all co-ordinates on the x axis have $y=0$).
5. Use your conclusions from \#4 to state the x-intercepts of each of the following. Check by graphing with technology, and correct if necessary.

$f(x)=(x-3)(x+5)(x-1 / 2)$ x-intercepts: does this check?	$\mathrm{f}(\mathrm{x})=(\mathrm{x}-3)(\mathrm{x}+5)(2 \mathrm{x}-1)$ x -intercepts: does this check?	$\mathrm{f}(\mathrm{x})=(2 \mathrm{x}-3)(2 \mathrm{x}+5)(\mathrm{x}-1)(3 \mathrm{x}-2)$ x-intercepts: does this check?

6. What do you notice about the graph when the polynomial function has a factor that occurs twice? Three times?

1.7.2 Factoring in our Graphs

Draw a sketch of each graph using the properties of polynomial functions. After you complete each sketch, check with your partner, discuss your strategies and make any corrections needed.

1.7.3 What's My Polynomial Name?

1. Determine a possible equation for each polynomial function.

2. Determine an example of an equation for a function with the following characteristics:
a) Degree 3, a double root at 4 , a root at -3 \qquad
b) Degree 4 , an inflection point at 2 , a root at 5 \qquad
c) Degree 3 , roots at $1 / 2,3 / 4,-1$ \qquad
d) Degree 3 , starting in quadrant 2, ending in quadrant 4 , root at -2 and double root at 3
e) Degree 4 , starting in quadrant 3 , ending in quadrant 4 , double roots at -10 and 10

Unit 1: Day 9: Dividing Polynomials (Day 1)		MHF4U
Minds On: 5	Learning Goals: Divide polynomials Examine remainders of polynomial division and connect to the remainder theorem	Materials BLM 1.9.1 BLM 1.9.2.
Action: 50	Make connections between the polynomial function $f(x)$, the divisor $x-a$, the remainder of the division $f(x) /(x-a)$ and $f(a)$ using technology	
Consolidate:20	Factor polynomial expressions in one variable of degree greater than two.	
Total $=75 \mathrm{~min}$		
Assessment Opportunities		
Minds On...	Whole Class \rightarrow Discussion Students should put away their calculators and attempt the following without the use of calculators - remind them of the long division methods for dividing: Divide 789 by 7 . result: 112 remainder 5 Divide 12546 by 6 result: 2091 remainder 0 Divide 32455 by 4 result: 8113 remainder 3 Include as many more as desired until students have a clear understanding of the method of long division.	
Action!	Small Groups \rightarrow Experiment Students will work either as a class or in pairs to complete the activities: Activity 1: Read through the worked example on BLM 1.9.1 and then do the division questions on page 2 of BLM 1.9.1 Activity 2: Work time for homework exercises (BLM 1.9.2 or textbook work).	
Consolidate Debrief	Small Groups \rightarrow Interview Students will consolidate : Activity 1: Teacher can choose to have students work in pairs or work through the first few questions as a class and then in pairs or individually for the remainder. As students finish, the teacher can have students complete questions on the board to aid those who might be having difficulty. Activity 2: Complete exercises on BLM 1.9.2.	
	Home Activity or Further Classroom Consolidation BLM 1.9.2 or textbook work from outlined text below: Addison Wesley 12 (MCT): Sections - 2.4	

A-W 11	McG-HR 11	H11	A-W12 (MCT)	H12	McG-HR 12
				$1.3,1.4,2.1,2.2$	$2.2,2.3,2.4$

1.9.1 Dividing Polynomials

Dividing a polynomial by another polynomial is similar to performing a division of numbers using long division. For example, divide the polynomial $x^{3}+13 x^{2}+39 x+46$ by $x+9$

Solution:

1) $x + 9 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 9 x + 4 6 } \quad$ first divide x into x^{3} to get x^{2}
2) $x + 9 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 9 x + 4 6 }$

$$
\frac{x^{3}+9 x^{2}}{4 x^{2}}
$$

3) $x + 9 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 9 x + 4 6 }$
4)

now multiply x^{2} by $x+9$ to get $x^{3}+9 x^{2}$
then subtract $x^{3}+9 x^{2}$ from $x^{3}+13 x^{2}$ to get $4 x^{2}$
bring down the $+39 x$
divide $4 x^{2}$ by x to get $4 x$
now multiply $4 x$ by $x+9$ to get $4 x^{2}+36 x$
4) $\frac{x^{3}+9 x^{2}}{4 x^{2}}+39 x$
$\frac{4 x^{2}+36 x}{3 x}$
$x + 9 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 9 x + 4 6 }$

$$
x + 9 \longdiv { x ^ { 2 } + 4 x } \frac { x ^ { 3 } + 1 3 x ^ { 2 } + 3 9 x + 4 6 } { }
$$

$$
\text { 5) } \quad \begin{array}{rrl}
\frac{x^{3}+9 x^{2}}{4 x^{2}+39 x} \begin{array}{l}
\downarrow \\
\downarrow
\end{array} & \begin{array}{l}
\text { bring down the }+46 \\
\text { divide } 3 \mathrm{x} \text { by } \mathrm{x} \text { to get } 3
\end{array} \\
\frac{4 x^{2}+36 x}{3 x}+46 \\
\downarrow & \text { multiply } 3 \text { by } \mathrm{x}+9 \text { to get } 3 \mathrm{x}+27 \\
\text { then subtract } 3 \mathrm{x}+27 \text { from } 3 \mathrm{x}+46 \text { to get } 19 \\
\frac{3 x+27}{19} &
\end{array}
$$

Since the remainder has a lower degree than the divisor, the division is now complete. The result can be written as:

$$
x^{3}+13 x^{2}+39 x+46=(x+9)\left(x^{2}+4 x+3\right)+19
$$

(NOTE: You could check your answer by multiplying out the result.)

1.9.1 Dividing Polynomials (Continued)

Using the previous example, complete the polynomial division questions below:

1. $x^{3}-5 x^{2}-x-10$ by $x-2$
2. $2 y^{3}+y^{2}-27 y-36$ by $y+3$
3. $y^{3}-28 y-41$ by $y+4$
[*note: $\left.y^{3}-28 y-41=y^{3}+0 y^{2}-28 y-41\right]$
4. $-6 x^{3}+29 x^{2}+7 x-13$ by $2 x-1$
5. $y^{3}+4 y^{2}-3 y-12$ by $y+4$

1.9.1 Dividing Polynomials (Answers)

1. $x^{3}-5 x^{2}-x-10$ by $x-2$

$$
\begin{array}{r}
x^{2}-3 x-7 \\
x - 2 \longdiv { x ^ { 3 } - 5 x ^ { 2 } - x - 1 0 } \\
\frac{x^{3}-2 x^{2} \downarrow}{-3 x^{2}}-x \downarrow \\
\frac{-3 x^{2}+6 x}{-7 x}-10 \\
\frac{-7 x+14}{-24}
\end{array}
$$

Result: $(x-2)\left(x^{2}-3 x-7\right)-24$
3. $y^{3}-28 y-41$ by $y+4$

$$
\begin{array}{r}
y^{2}-4 y-12 \\
y + 4 \longdiv { y ^ { 3 } } \quad - 2 8 y - 4 1 \\
\frac{y^{3}+4 y^{2}}{-4 y^{2}}-\downarrow \quad \downarrow \quad \downarrow \\
\frac{-4 y^{2}-16 y}{-12 y}-41 \\
\frac{-12 y-48}{7}
\end{array}
$$

Result: $(y+4)\left(y^{2}-4 y-12\right)+7$ extra $\rightarrow(y+4)(y+2)(y-6)+7$
5. $-6 x^{3}+29 x^{2}+7 x-13$ by $2 x-1$

$$
\begin{array}{r}
-3 x^{2}+13 x+10 \\
2 x - 1 \longdiv { - 6 x ^ { 3 } + 2 9 x ^ { 2 } + 7 x - 1 3 } \\
\frac{-6 x^{3}+3 x^{2}}{26 x^{2}}+7 x \quad \downarrow \\
\frac{26 x^{2}-13 x}{20 x}-13 \\
\frac{20 x-10}{-3}
\end{array}
$$

Result: $(2 x-1)\left(-3 x^{2}+13 x+10\right)-3$
extra $\rightarrow(2 x-1)(-3 x-2)(x-5)-3$
2. $2 y^{3}+y^{2}-27 y-36$ by $y+3$

$$
\begin{array}{r}
2 y^{2}-5 y-12 \\
y + 3 \longdiv { 2 y ^ { 3 } + y ^ { 2 } - 2 7 y - 3 6 } \\
\frac{2 y^{3}+6 y^{2}}{-5 y^{2}-27 y \quad \downarrow} \quad \downarrow \\
\frac{-5 y^{2}-15 y}{-12 y}-36 \\
\frac{-12 y-36}{0}
\end{array}
$$

Result: $(y+3)\left(2 y^{2}-5 y-12\right)$
extra $\rightarrow(y+3)(2 y+3)(y-4)$
4. $2 x^{3}-3 x^{2}-8 x-3$ by $2 x+1$

$$
\begin{aligned}
& 2 x + 1 \longdiv { 2 x ^ { 3 } - 3 x ^ { 2 } - 8 x - 3 } \\
& \begin{array}{cc}
\frac{2 x^{3}+x^{2}}{-4 x^{2}}-8 x & \downarrow
\end{array} \\
& \frac{-4 x^{2}-2 x}{-6 x}-3 \\
& \frac{-6 x-3}{0}
\end{aligned}
$$

Result: $(2 x+1)\left(x^{2}-2 x-3\right)$ extra $\rightarrow(2 x+1)(x+1)(x-3)$
6. $y^{3}+4 y^{2}-3 y-12$ by $y+4$

$$
\begin{array}{r}
y^{2}-3 \\
y + 4 \longdiv { y ^ { 3 } + 4 y ^ { 2 } - 3 y - 1 2 } \\
\frac{y^{3}+4 y^{2}}{0} \quad \downarrow \quad \downarrow \\
-3 y-12 \\
\frac{-3 y-12}{0}
\end{array}
$$

Result: $(y+4)\left(y^{2}-3\right)$
extra $\rightarrow(y+4)(y+\sqrt{3})(y-\sqrt{3})$

1.9.2 Dividing Polynomials

Complete the exercises below:

1. Find each quotient and remainder:
(a) $\left(x^{2}+6 x+15\right) \div(x+3)$
(b) $\left(x^{2}-4 x+13\right) \div(x-2)$
(c) $\left(x^{2}-x+3\right) \div(x+2)$
(d) $\left(2 x^{3}+x^{2}-24 x-32\right) \div(x-4)$
2. When a certain polynomial is divided by $x+3$, the quotient is $x^{2}-3 x+5$ and the remainder is 6 . What is the polynomial?
3. When a certain polynomial is divided by $x-2$, the quotient is $x^{2}+4 x-7$ and the remainder is -4 . What is the polynomial?
4. Divide:
(a) $\left(x^{3}+3 x^{2}-4 x-12\right) \div(x-2)$
(b) $\left(3 x^{3}+2 x^{2}-11 x-12\right) \div(x+1)$
(c) $\left(2 x^{3}+x^{2}-24 x-32\right) \div(x-4)$
(d) $\left(2 x^{3}+3 x^{2}-14 x-13\right) \div(x-3)$

A-W 11	McG-HR 11	H11	A-W12 (MCT)	H12	McG-HR 12
				$1.3,1.4,2.1,2.2$	$2.2,2.3,2.4$

1.10.1 Remainder Theorem and Factor Theorem

Remainder Theorem:

When a polynomial $f(x)$ is divided by $x-a$, the remainder is $f(a)$

1. Find the remainder when $2 x^{3}+3 x^{2}-17 x-30$ is divided by each of the following:
(a) $x-1$
(b) $x-2$
(c) $x-3$
(d) $x+1$
(e) $x+2$
(f) $x+3$

Factor Theorem:

If $x=a$ is substituted into a polynomial for x, and the remainder is 0 , then $x-a$ is a factor of the polynomial.
2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2 x^{3}+3 x^{2}-17 x-30 ?$
3. Using the binomials you determined were factors of $2 x^{3}+3 x^{2}-17 x-30$, complete the division (i.e. divide $2 x^{3}+3 x^{2}-17 x-30$ by your chosen $(x-a)$ and remember to fully factor your result in each case.

1.10.1 Remainder Theorem and Factor Theorem (Answers)

1. Find the remainder when $2 x^{3}+3 x^{2}-17 x-30$ is divided by each of the following:
(a) $x-1$
(b) $x-2$
(c) $x-3$
$\therefore a=1$
$f(1)=2(1)^{3}+3(1)^{2}-17(1)-30$
$a=2$
$a=3$
$f(1)=2+3-17-30$
$f(a)=-36$
$f(a)=0$
$f(1)=-42$
(d) $x+1$
(e) $x+2$
(f) $x+3$
$a=-1$
$a=-2$
$a=-3$
$f(a)=-12$
$f(a)=0$
$f(a)=-6$
2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2 x^{3}+3 x^{2}-17 x-30 ?$

From results \rightarrow (c) $x-3$ and (e) $x+2$ are factors
3. Using the binomials you determined were factors of $2 x^{3}+3 x^{2}-17 x-30$ complete the division (i.e. divide $2 x^{3}+3 x^{2}-17 x-30$ by your chosen $x-a$) and remember to fully factor your result in each case.
(c) $x-3$
(e) $x+2$
$x - 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 1 7 x - 3 0 }$
$x + 2 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 1 7 x - 3 0 }$
$\frac{2 x^{3}-6 x^{2}}{9 x^{2}}-17 x \downarrow$
$\frac{9 x^{2}-27 x}{10 x}-30$
$\frac{2 x^{3}+4 x^{2}}{-x^{2}}-17 x \quad \downarrow$
$\frac{-x^{2}-2 x}{-15 x}-30$
$\frac{10 x-30}{0}$
Result: $(x-3)\left(2 x^{2}+9 x+10\right)$
Result: $(x+2)\left(2 x^{2}-x-15\right)$
$(x-3)(2 x+5)(x+2)$

$$
(x+2)(2 x+5)(x-3)
$$

(Note: The results are the same just rearranged.)

1.10.2 Dividing Polynomials Practice

Complete the polynomial divisions below:

1. Without using long division, find each remainder:
(a) $\left(2 x^{2}+6 x+8\right) \div(x+1)$
(b) $\left(x^{2}+4 x+12\right) \div(x-4)$
(c) $\left(x^{3}+6 x^{2}-4 x+3\right) \div(x+2)$
(d) $\left(3 x^{3}+7 x^{2}-2 x-11\right) \div(x-2)$
2. Find each remainder:
(a) $\left(2 x^{2}+x-6\right) \div(x+2)$
(b) $\left(x^{3}+6 x^{2}-4 x+2\right) \div(x+1)$
(c) $\left(x^{3}+x^{2}-12 x-13\right) \div(x-2)$
(d) $\left(x^{4}-x^{3}-3 x^{2}+4 x+2\right) \div(x+2)$
3. When $x^{3}+k x^{2}-4 x+2$ is divided by $x+2$ the remainder is 26 , find k.
4. When $2 x^{3}-3 x^{2}+k x-1$ is divided by $x-1$ the remainder is 2 , find k.

ANSWERS:

1. (a) 4 (b) 44 (c) 27 (d) 37
2. (a) 0 (b) 11 (c) -25 (d) 6
3. 6
4. 4
