Solving Problems using Trigonometric Functions

The table below displays the average high temperature, by month, in Central Park.

Average Monthly Temperature (°F)											
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
38	42	50	61	71	79	84	83	75	64	54	43

a)

Use this data to write a function representing the temperature, f(m), in month m, with January = 0. Graph this function on the axes below, labeling any critical values.

b) When is the average high temperature 78 degrees Fahrenheit?

BONUS:

Climate scientists believe that the average high temperature in Central Park for the month of July could increase by as much as 10° by 2050. Assuming that minimum average temperature stays the same, write a second function modeling this change and use it to predict the new average high temperature for the month of October.

Robert and his friend Hilda are riding in a Ferris wheel at the State Fair.

Height Above the Ground											
TIME (min)	0	1	2	3	4	5	6	7	8	9	10
ELEVATION (feet)	0	7	24	40	48	40	24	7	0	7	24

- a) Predict Hilda and Robert's height at 15 minutes.
- b) After 15 minutes, the two friends decide they want to get off the Ferris wheel. How much longer will they have to wait before they can exit the ride?
- c) When are they at an elevation of 6 feet in the first 30 seconds?
- d) When are they at an elevation of 42 feet in the first 30 seconds?

Think About It The model for the height h of a Ferris wheel car is

$$h = 51 + 50 \sin 8\pi t$$

When is the height of the Ferris wheel car 98 feet high?

Bonus:

Alter the model so that the height of the car is 1 foot when t = 0.

Sales Sales S, in thousands of units, of a seasonal product are modeled by

$$S = 58.3 + 32.5 \cos \frac{\pi t}{6}$$

where t is the time in months (with t = 1 corresponding to January and t = 12 corresponding to December). Use a graphing utility to graph the model for S and determine the months when sales exceed 75,000 units.