1.

$$
f(x)=-x^{9}+7 x^{3}-2 x-8
$$

Sketch 5 possible graphs for this function. For each, state the number of zeroes and turning points.
2. Compare the key features of the graphs of the functions

$$
\begin{gathered}
f(x)=x \\
f(x)=x^{2} \\
f(x)=x^{3} \\
f(x)=x^{3}+x^{2} \\
f(x)=x^{3}+x
\end{gathered}
$$

3. Compare the following two functions

$$
\begin{gathered}
f(x)=2^{x+4}-5 \\
g(x)=x^{4}-5
\end{gathered}
$$

4. Determine an equation for a fifth-degree polynomial function that intersects the \mathbf{x}-axis at only $\mathbf{5}, \mathbf{1}$, and $\mathbf{- 5}$, and sketch the graph of the function.
5. Determine a polynomial function that can be used to model the function $f(x)=\sin x$ over the interval [0,2pi]
6. Determine the symmetry of $f(x)=x^{4}-4 x^{2}$
7. Compare the key features of the graph of the families of rational functions of the form

$$
f(x)=\frac{1}{x+n} \text { and } g(x)=\frac{1}{x^{2}-4}
$$

