## MHF4U - Graphing and

Finding Zeros with the Help of Long Division

INTRODUCTION

Divide 64 by 15

$$
15 \sqrt{64}
$$

So $64=\ldots x$

## Divide 918 by 54

$54 \sqrt{918}$

So $918=$


PROBLEM 1:

$$
\begin{aligned}
& \text { 1. Divide } x^{3}+4 x^{2}-4 x-7 \\
& \text { by }(x+1) \text {. }
\end{aligned}
$$

$$
x+1 \sqrt{x^{3}+4 x^{2}-4 x-7}
$$

DON'T ERASE THIS WORK!!!

$$
\begin{aligned}
& \text { 2. Sketch } f(x)=x^{3}+4 x^{2}-4 x-7 \\
& \text { - Basic Shape } \\
& \text { - End behaviors } \\
& \text { - y-intercept }
\end{aligned}
$$

3. Write $f(x)$ in factored form (using what you found in \#1)
4. Now make a better sketch from what you see in the factored form.

PROBLEM 2:

$$
\text { 1. Divide } x^{3}-7 x-6 \text { by }(x-3)
$$

$$
x-3 \sqrt{x^{3}-7 x-6}
$$

2. Sketch $f(x)=x^{3}-7 x-6$

Basic Shape
End behaviors
y-intercept
3. Write $f(x)$ in factored form (using what you found in \#1)
4. Now make a better sketch from what you see in the factored form.

PROBLEM 3:
Sketch
$f(x)=6 x^{3}-2 x-15 x^{2}+5$ if you know that $(2 \mathrm{x}-5)$ is a factor.

PROBLEM 4:
Sketch
$f(x)=x^{3}+6 x^{2}-x-30$ if you know that $(x+5)$ is a factor.

PROBLEM 5:
Sketch
$f(x)=x^{3}-5 x^{2}-2 x+24$
if you know that ( $x-3$ ) is a factor.

PROBLEM 6:
$f(x)=x^{4}+x^{2}-20$ if
you know that $(x+2)$ is a factor.

